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Principal Investigator: Campbell, David J. Award ID: 0308420

Organization: Michigan State University 

Title:
BE/CNH: An Integrated Analysis of Regional Land-Climate Interactions

Project Participants

Senior Personnel

Name: Campbell, David

Worked for more than 160 Hours: Yes

Contribution to Project: 
Campbell has been involved in administering the grant at the university level. This has involved negotiating space and equipment
issues, and overseeing the budget. 2) The land use component of the project.

Name: Pijanowski, Bryan

Worked for more than 160 Hours: Yes

Contribution to Project: 
Dr. Pijanowski is leading the land use/cover change modeling activities which are being coordinated with other PIs on the land
use/cover change group (principally Drs. Campbell and Olson).

Name: Olson, Jennifer

Worked for more than 160 Hours: Yes

Contribution to Project: 
Dr. Olson has led the land use component of the research, and has coordinated the integration of the components of the project. 
This has included 1) collecting and preparing a variety of data and information concerning land use change, and socioeconomic
and environmental variables at the case study and the East Africa regional level; (2) designing and supervising specific studies
affecting future land use (urbanization, deforestation related to fuelwood harvesting), and 3) coordinating particularly with the
remote sensing and the land use modeling component of the project on, for example, issues of temporal & spatial data
comparability. She has also acted as a project manager for much of the project activities, such as coordinating people and research
components in the US, UK and East Africa, organizing meetings, hiring personnel, purchasing equipment, etc.

Name: Qi, Jiaguo

Worked for more than 160 Hours: Yes

Contribution to Project: 
Dr. Qi has continued the focus established previously. He continues the land cover dynamics analysis over East Africa. He and his
students analyzed three currently available land covers (IGBP, Africover, and GLC200)to study which land cover product is best
fit for the regional climate model (RAMS). He also worked on the comparison of these three classification systems and tried to
merge classes that make sense to the RAMS model. 

In addition to these analysis, he worked with his students to derive other surface parameters that RAMS model requires. They
include albedo, LAI, fPAR, and surface temperature derived from current satellite images. These data have been organized and
transformed to the format that is ready to use for RAMS model. Working with Lijian Yang and his students, Dr. Qi also analyzed
the phenological characterisitcs of the LAI and fPAR variables required by the RAMS model. The results from this activity should
be a better phenological parameterization derived from the data, to replace assumed parameterization by the current RAMS model.

Also, Dr. Qi worked with his students Jianjun Ge, on RAMS model re-paramerization and tested which biophysical parametes
(LAI, fPAR, albedo, and geospatial changes of land cover types) are RAMS model most sensitive to. The results from this analysis
will help prioretize the tasks when parameterizing the RAMS model.

Name: Andresen, Jeffrey

Worked for more than 160 Hours: Yes

Contribution to Project: 
Andresen has been involved with 1) The agroclimatic modeling portion of the project. He participated in the design and set up of
two cropping system simulations considered in the project, maize and natural vegetation/rangeland pasture.  Major activities thus
far have included selection of the simulation models to be used in the project, collection of daily climate, soil profile, and
agronomic data from East Africa, early validation of the selected models, and preparation of software needed to stochastically
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generate sequences of representative daily climate data for use in the models.  2) The regional climate modeling portion of the
project.  He assisted with the set up new parallel processor computational facilities at MSU and in initial validation of the regional
climate models (surface parameterization).  3) The recruitment and hire of two post doctoral (research associate) positions
associated with the regional climate modeling and the agroclimatic simulation portions of the project

Name: Huebner, Marianne

Worked for more than 160 Hours: Yes

Contribution to Project: 
Dr. Huebner (Department of Statistics) produced estimates for the temporal dynamics of the medians of LAI using different
algorithms (Monte Carlo, robust, Levenberg-Marquardt) and assessed the goodness of fit. She led regular discussions about
research design and also on the functions for land cover variables used by RAMS, the study area and land cover types to be
considered, and the available data and statistical methods that can be used to analyze these data. She also worked with graduate
students to produce exploratory statistical analysis to study the temporal and spatial distribution of LAI for various land cover
types. 

Name: Lusch, David

Worked for more than 160 Hours: Yes

Contribution to Project: 
Dr. Lusch has worked on the land cover analyses. A major task has been the selection and quality assessment of different land
cover schemes, such as Africover. Dr. Lusch conducted an aerial survey in Kenya over two study sites taking digital video images
that permit comparison between land covers on the ground and those reported in the classification schemes.

Name: Yang, Lijian

Worked for more than 160 Hours: No

Contribution to Project: 
Dr. Yang supervised the graduate students in Statistics in the production of confidence bands for preliminary data to evaluate the fit
of the trigonometric curve for LAI in one land cover type used by RAMS. These procedures will now be available for assessment
of the structure of a variety of land cover variables.

Name: Wilson, Sigismond

Worked for more than 160 Hours: No

Contribution to Project: 
Mr. Wilson (new PhD student in Geography, MSU) has started a study on migration trends and the political ecology of those trends
in East Africa.

Name: Lofgren, Brent

Worked for more than 160 Hours: Yes

Contribution to Project: 
Dr. Lofgren, NOAA GLERL Labs, Ann Arbor, has been involved in coordinating the efforts of those involved in the climate work
for CLIP. He played a primary role in setting up the 8-node cluster and setting up RAMS to run on that system, and has supervised
and done extensive consulting with Nathan Moore in running and testing RAMS in the African domain, and helped to provide
guidance in coordinating the input and feedback of land cover data for RAMS.

Name: Conway, Declan

Worked for more than 160 Hours: Yes

Contribution to Project: 
Dr. Declan Conway, Climatic Research Unit, University of East Anglia.  Drs. Conway and Hansen (below)have collected and
disseminated to team members historical rainfall and temperature data for East Africa. They have conducted trend analysis of
monthly rainfall examining inter-annual and seasonal variability.

Name: Misana, Salome

Worked for more than 160 Hours: No

Contribution to Project: 
Dr.Misana (Assoc Professor, University of Dar es Salaam): completed a case study of land use change and driving forces in
Tanzania and participated in a cross-site regional comparison of land use change in East Africa (funded mostly under another
project). She also assisted with and participated as an expert in the Tanzanian land use expert systems workshop.


Name: Yanda, Pius
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Worked for more than 160 Hours: No

Contribution to Project: 
Dr. Pius Yanda (Assoc Professor, University of Dar es Salaam): has collected and made available data and information from
Tanzania, including meteorological and GIS data (land cover, etc.). He also prepared and coordinated the Tanzanian land use
expert systems workshop (identified and invited the experts, etc.) and wrote a report of workshop results.


Name: Mugisha, Samuel

Worked for more than 160 Hours: No

Contribution to Project: 
Samuel Mugisha (Geographer, Makerere University): completed three case studies of land use change and driving forces in
Uganda and participated in a cross-site regional comparison of land use change in East Africa (funded mostly under another
project). He also prepared and coordinated the Ugandan land use expert systems workshop (identified and invited the experts, etc.)
and digitized the resultant land use change 'zones'.


Name: Thornton, Philip

Worked for more than 160 Hours: No

Contribution to Project: 
Dr. Thornton of ILRI has organized the establishment of the soils and meteorological database for paramaterizing the crop- and
rangeland-climate models for East Africa, and has been conducting initial runs of the models. The research associate in this area
who has been hired and will begin work in the next year will build this on.

Name: Kim, Dong-Yun

Worked for more than 160 Hours: No

Contribution to Project: 
Dr Kim has conducted trends analysis of historical precipitation data to identify changes in length and severity of droughts.

Post-doc

Name: Moore, Nathan

Worked for more than 160 Hours: Yes

Contribution to Project: 
Dr. Moore has been engaged in calibration and validation of the atmospheric model  The code has been modified to permit the use
of an alternative, more accuate  land cover database (Africover).  The model has been calibrated via several numerical
parameterizations to produce atmospheric conditions in close agreement with observed measurements-- temperature, relative
humidity, and so on. At this point the validation is heavily dependent on quality and availability of observations.  We have found
that observations are extremely sparse in both space and time, and that some gridded datasets offer significantly different
respresentations of some variables (see attached figure; scales are different, but maxima/minima are not consistent).  Time series of
domain-averaged quantities should improve model-to-observation correspondence, at the expense of higher spatial resolution.

Name: Hansen, Clair

Worked for more than 160 Hours: No

Contribution to Project: 
Dr Hansen, Climatic Research Unit, University of East Anglia.  Drs. Hansen and Conway (above) have collected and disseminated
to team members historical rainfall and temperature data for East Africa. They have conducted trend analysis of monthly rainfall
examining inter-annual and seasonal variability.

Name: Alagarswamy, Gopal

Worked for more than 160 Hours: Yes

Contribution to Project: 
Gopal is running the crop-climate simulations.

Name: Ray, Deepak

Worked for more than 160 Hours: Yes

Contribution to Project: 
Land use modelling and input to regional climate models.
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Graduate Student

Name: Goodwin, Michael

Worked for more than 160 Hours: Yes

Contribution to Project: 
Mr. Goodwin (M.A. student, Geography Department, MSU) has conducted a study of urbanization trends in East Africa. He has
collected and collated census and other demographic data for Kenya, Uganda and Tanzania, and has written a report summarizing
trends and their driving forces. He has also started a report on tree cutting due to fuelwood collection in the region. Supported with
funds from NSF and from FLAS Language Fellowship.

Name: Wang, Jing

Worked for more than 160 Hours: Yes

Contribution to Project: 
From the Department of Statistics (MSU),with Lan Xue examined relationships between a number of variables that represent land
surface characteristics. These include procedures to analyze the dependence structure of one variable (e.g., LAI - leaf area index)
on a large number of other variables, and formulated procedures for the construction of confidence band (error bar) around the
regression curve that relates one variable to another.

Name: Xue, Lan

Worked for more than 160 Hours: Yes

Contribution to Project: 
From the Department of Statistics (MSU),with Jing Wang examined relationships between a number of variables that represent
land surface characteristics. These include procedures to analyze the dependence structure of one variable (e.g., LAI - leaf area
index) on a large number of other variables, and formulated procedures for the construction of confidence band (error bar) around
the regression curve that relates one variable to another.

Name: Mitchell, Marian

Worked for more than 160 Hours: No

Contribution to Project: 
(PhD student, Geography Department, MSU): Ms. Mitchell has conducted several tasks, including a broad literature review and
complication of knowledge elicitation methods (for the expert systems workshops), and some GIS data preparation. 

Name: Alexandridis, Konstantinos

Worked for more than 160 Hours: Yes

Contribution to Project: 
Mr. Alexandridis (PhD student, Purdue University) is coordinating the agent-based model development with Mr. Pithadia and Dr.
Pijanowski.  He is also leading the development of three peer-reviewed papers on the agent based simulation model.  He is also
conducting research on how role playing simulation and agent based models can be interfaced.

Name: Wilson, Sigismond

Worked for more than 160 Hours: Yes

Contribution to Project: 
Working on issues of urbanization and conflict resolution.

Name: Davis, Amelie

Worked for more than 160 Hours: Yes

Contribution to Project: 
Working on demographic projections for East Africa to be linked to the land use models

Undergraduate Student

Technician, Programmer

Name: Pithadia, Snehal

Worked for more than 160 Hours: Yes

Contribution to Project: 
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Mr. Pithadia (Research Technician, Purdue University)) is working on developing GIS layers for input to the neural network model
as well as recoding the model so that it can be used with a mid-scale multi-criteria evaluation component. Male, East Indian,
citizen of India.

Other Participant

Research Experience for Undergraduates

Organizational Partners

NOAA Great Lakes Environmental Research Lab
glerl IS providing one-quarter of Brent Lofgren's time, support for some of his travel. Graduate Assistant Jianjun Ge spent time working on
RAMS with Lofgren at the NOAA lab in Boulder Colorado.

FAO
Provided land cover data - Africover

USGS EROS Data Center
Provided SRTM data

NASA
Provided MODIS data

University of Dar Es Salaam
Institute for Resource Assessment (IRA) provided meteorological data

Makerere University, Uganda
MUIENR provided meteorological data

International Livestock Research Institute
Administration of CLIP contracts by ILRI continued during the year 2005. By December 2005, all payments had been made. These contracts
covered two participants in Uganda and two in Tanzania. These contracts had been running since 2003 the first year of CLIP activities and
covered activities reported in last year's annual report. New contracts to cover activities in the current year have been made.  



Activities under these new contracts will include: 

1.	Writing a report on adaptation to climate change in Uganda, Kenya and Tanzania. Which involves collecting existing literature, reflecting on
model results, conducting interviews as necessary, and writing the report

2.	Liaison with government meteorological services, including assisting in collecting meteorological data as needed;

3.	Providing expertise in local and regional weather and climate conditions;

4.	Assistance with interpretation and analysis of the regional climate modeling results.

5.	Participation in project meetings and workshops, 

6.	Contributing to the writing of papers and reports.

 

During the year whose activities are covered in this report, ILRI undertook collection of long term maize yield data from East Africa (Uganda,
Tanzania and Kenyan) and visited a number of research stations in the three countries. Data collected has now been presented to the modeling
teams in MSU and UK to be incorporated in crop yield models.    



Over the year IRLI has undertaken research on the effects of climate change on the composition and distribution of livestock feed resources in
Kenya under the CLIP project. The aim of this research is to assess how climate change will affect availability and quality of livestock feed
resources especially in the vast pastoral areas where livelihoods depend almost entirely on livestock. The grazing systems in these pastoral
areas are characterized by nomadic movements of people and cattle in search of pastures whose presence and grazing quality is determined by
the amount of rainfall and length of growing season. These areas have experienced recurrent droughts over the last few decades resulting in
major changes livestock herds partly due to availability of feed resources. We have analyzed the distribution of grass species according to 12
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major eco-regions in Kenya and characterized their affinities to climatic factors like the length of growing seasons, rainfall patterns and their
usefulness as fodder plants. 



This work will continue to 2007 and will link up with models being generated on scenarios of vegetation and land cover. 


Other Collaborators or Contacts
 

Activities and Findings

Research and Education Activities: (See PDF version submitted by PI at the end of the report)
Conference Papers  



Ge, J., J. Qi, N. Moore and N. Torbick, Quantifying the recent trend of major mountain glaciers using long term AVHRR imagery, Earth
System Science Partnership (ESSP) Open Science Conference, Beijing, China, 9-12 November 2006, abstract submitted.

Ge, J., J. Qi, N. Moore and N. Torbick, Comparison of land surface temperature from Moderate-Resolution Imaging Spectroradiometer
(MODIS) and Regional Climate Modeling System (RAMS) in East Africa, AAG, Chicago, IL, USA, 7-11 March 2006.

Ge, J., N. Moore, J. Andresen, N. Torbick and J. Qi, Simulating land surface temperature using Regional Atmospheric Modeling System
(RAMS) in East Africa (5-P-362), 1st iLEAPS Science Conference, Boulder, CO, USA, 21-26 January 2006.

Ge, J., J. Qi and N. Torbick, Biophysical evaluation of five land covers for land-climate interaction modeling in East Africa, IEEE International
Geoscience and Remote Sensing Symposium, Seoul, South Korea, 25-29 July 2005. 

Moore,N., B. Lofgren, J. Andresen, B. Pijanowski, J. Olson. 2005. 'Projected Changes in Precipitation Variability and Distribution Due to Land
Cover Change in East Africa' Paper presented at the American Geophysical Union fall 2005 meeting, San Francisco, December 6-9 2005. 

Moore, N., B. Lofgren, N. Torbick, J. Wang, and J. Andresen, 2006, Modeling changes in energy budget variability and distribution due to land
cover parameterization in East Africa.  1st iLEAPS Science Conference, Boulder, CO, 21-26 January 2006.

Olson, J. 2006. 'A multi-scale analysis of three land use systems in the East African savanna.' Paper presented at the NSF Conference on
Interdisciplinary Science, Dar es Salaam, May 2006.

Olson, J. and rest of CLIP team. 2006. 'Linking Social Processes to Regional Climate Change,' Paper presented at the Association of American
Geographers Annual Meeting, Chicago, IL, March 8, 2006.

Olson, J. 2006. 'A multi-scale analysis of the linkages between human and biophysical processes in East Africa.' Paper presented at the 2006
Annual Meeting of AAAS, St. Louis, MO, Feb. 20, 2006.

Olson, J.  N. Moore, B. Pijanowski. 2006. 'Land Use/ Cover Change Impacts on Climate at a Regional Scale: Addressing the
human/environment interface in East Africa.' Paper presented at the 6th Open Meeting of the Human Dimensions of Global Environmental
Change Research Community (IHDP), University of Bonn, Bonn, Germany, 9-13 October 2005. 

 Torbick, N., et al. 2006. Land use land cover assessment and parameterization for climate-land interaction modeling. Association of American
Geographers Annual Meeting, Chicago, Illinois, USA March 8.

Torbick, N., Lusch, D., Olson, J., Ge, J., Qi, J. 2005. Evaluation of land use land cover for climate û land modeling using videography.
Proceedings at the 25th International Geoscience and Remote Sensing Symposium, 	IEEE, July 25-29th 2005, Seoul, Korea.

Torbick, N. Hession, S., Ge, J., Shortridge, A. 2006. Spatiotemporal interpolation of NDVI and precipitation. American Society for
Photogrammetry and Remote Sensing. Reno, Nevada, May 1-5.

Qi, J., Ge, J. Torbick, N. Moore, N. 2005. Land Cover Impacts on Climate Simulations. International Geoscience and Remote Sensing
Symposium. Proceedings at the 25th International Geoscience and Remote Sensing Symposium, IEEE, July 25-29th 2005, Seoul, Korea. Seoul,
Korea.

Sarah L. Hession, Ashton M. Shortridge, Nathan M. Torbick. 2006. Categorical models for spatial uncertainty. Seventh International
Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences. Lisbon, Portugal. July 5-7.

website





PROJECT WEBSITE

http://clip.msu.edu



RAMS Simulations

We have successfully completed a continuous decade (actually 12 straight years) of RAMS simulations using our regionally-specific phenology
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splines.  

To our knowledge a simulation with RAMS has never been run this long. 

We have tested the differences between regionally-specific phenology and the default RAMS phenology; this comparison will be published in
the coming year.  We have also tested the effects of our regionally-specific land cover (CLIPcover) compared to the default OGE cover; we
expect to publish these results as well in the coming year. 






Findings: (See PDF version submitted by PI at the end of the report)

Training and Development:
Drs. Olson, Moore and Andresen have used East African land use change, and climate information in geography classes at MSU, and in
General Education classes.  



Graduate students Ge, Torbick, Hession and Goodwin have all participated in conference presentations and in writing of research papers (see
listing). 


Outreach Activities:
Team members have made presentations at public forums, including with policy makers, and campus-wide groups, as well as at professional
meetings (see Other Specific Products)._ Graduate students and post-doctoral fellows have been actively involved. 


Journal Publications

Alexandridis, K., and B. Pijanowski., "Assessing multi-agent parcelization performance in the MABEL simulation model using Monte Carlo
replication experiments.", Environment and Planning B., p. , vol. , (    ). Accepted

Alexandridis, K. T., and B. C. Pijanowski., "Simulating sequential decision making processes of base action actions in a Multi Agent Based
Economic Landscape Model.", Ecological Economics., p. , vol. , (    ). Submitted

Zhen Lei, Bryan Pijanowski and Jennifer Olson., "Distributed Modeling Architecture of a Multi-Agent-Based Behavioral Economic Landscape
(MABEL) Model.", Simulation, p. 503, vol. 81, (2005). Published

Campbell, David, David Lusch, Thomas Smucker, Edna Wangui., "Multiple Methods in the Analysis of Driving Forces of Land Use and land
Cover Change: A Case Study from SE Kajiado District Kenya.", Human Ecology, p. , vol. 33, (2005). Accepted

Xue, L. and Yang, L., "Estimation of semiparametric additive coefficient model.", Journal of Statistical Planning and Inference, p. , vol. , (    ).
Accepted

Xue, L. and Yang, L., "Additive coefficient modeling via polynomial spline.", Statistica Sinica, p. , vol. , (    ). Accepted

Ge, J., Qi, J., Torbick, N., Olson, J., Lusch, D. 2005., "Biophysical evaluation of four land covers for land-climate interaction modeling in East
Africa.", Remote Sensing of Environment., p. , vol. , (    ). Submitted

Hanson , Clair E. and Declan Conway, "?A cross-scales analysis of rainfall variability in East Africa; from decadal scale to daily scale and from
regional scale to station scale??", Climate Research, p. , vol. , (    ). Submitted

Hanson , Clair E. and Declan Conway, "?Simulating East African Rainfall using a Stochastic Weather Generator and Coupled Global Climate
Models. Part 1: Model Calibration and Validation?", Climate Research, p. , vol. , (    ). Submitted

Pontius, Robert Gilmore Jr., ...... Bryan Pijanowski, Snehal Pithadia, et al., "State of the art of dynamic land-change modeling as measured by
quantitative validation.", Annals of American Association of Geographers, p. , vol. , (    ). Submitted
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Torbick, N., Lusch, D., Olson, J., Ge, J., Qi, J. 2005., "An Assessment of Africover and GLC2000 using general agreement and airborne
videography", International Journal of Remote Sensing, p. , vol. , (    ). Submitted

Torbick, N., Qi, J., Lusch, D., Olson, Moore, N., J., Ge., "Developing land use/land cover and parameterization for climate and land modeling
in East Africa.", International Journal of Remote Sensing., p. , vol. , (    ). Submitted

Wang, J. and Yang, L. (, "Polynomial spline confidence bands for regression curves.", Annals of Statistics, p. , vol. , (    ). Submitted

Yang, L., Park, B. U., Xue, L. and Härdle, W., "Estimation and testing for varying coefficients in additive models with marginal integration.",
Journal of the American Statistical Association, p. , vol. , (    ). Submitted

Wang, J. and Yang, L., "Polynomial spline confidence bands for regression curves.", Annals of Statistics, p. , vol. , (    ). Submitted

Books or Other One-time Publications

Web/Internet Site

Other Specific Products

Product Type:

website

Product Description:
PROJECT WEBSITE



http://clip.msu.edu



A dedicated site with a link to the CLIP home site has been set up at: http://www.uea.ac.uk/dev/climate/impacts_8.htm  


Sharing Information:
Online

Contributions

Contributions within Discipline: 
We have successfully completed a continuous decade (actually 12 straight years) of RAMS simulations using our regionally-specific phenology
splines.  To our knowledge a simulation with RAMS has never been run this long. We have tested the differences between regionally-specific
phenology and the default RAMS phenology; this comparison will be published in the coming year.  We have also tested the effects of our
regionally-specific land cover (CLIPcover) compared to the default OGE cover; we expect to publish these results as well in the coming year. 



Data passed from LTM to RAMS in decadal increments has been achieved as part of Coupled System #3.  We also have proof-of-concept for
passing RAMS data to the CERES-MAIZE model successfully, thus completing all inputs and outputs to and from the climate segment of our
loop. 



Advances in GeoScience concerning use of globally-available spatial data sets for climate change science have been reported to the
international science community via journal articles and presentations at professional meetings.


Contributions to Other Disciplines: 
This is a multidisciplinary project and team members have made presentations at meetings of their individual disciplines (see Other Specific
Products).

Contributions to Human Resource Development: 
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Jing Wang completed her PhD in Probability and Statistics under the aegis of the project.  Two other PhD students are writing their
dissertations and 1 MA student is completing his thesis.

Contributions to Resources for Research and Education: 
 
Contributions Beyond Science and Engineering: 
Policy-makers and others (eg NGO's) who have participated at meetings at which project results have been presented, have reported that they
have used the experience in their work in East African institutions.

Special Requirements

Special reporting requirements: None

Change in Objectives or Scope: None

Unobligated funds: less than 20 percent of current funds

Animal, Human Subjects, Biohazards: None

Categories for which nothing is reported: 
Any Book

Any Web/Internet Site

Contributions: To Any Resources for Research and Education



Land Use Land Cover Change Findings 
Assessments 
Assessments have been carried out on several available LULC products for East Africa. 
Products (and administering agencies) evaluated include:  

• Africover, United Nations Food and Agricultural Organization 
• Global Land Cover for the year 2000 (GLC2000), Joint Research 

Centre’s Global Vegetation Monitoring Unit as part of the Millennium 
Ecosystem Assessment 

• MODIS LAI, fPAR, EVI, Clouds, and Surface Temperature, NASA and 
the MODIS Land Product Team 

• Global Land Cover Characterization/Olson Global Ecosystem, USGS, 
University of Nebraska-Lincoln, Joint Research Centre 

• Land-Ecosystem Atmosphere Feedback (LEAF) model, RAMS 
characterization data 

 
Methodologies included both traditional assessment metrics as well as creation of a new 
biophysical evaluator. The traditional metrics included two primary techniques. The first 
technique compared levels of agreement/disagreement of land categories between 
products in the form of contingency, or confusion, tables. The tables indicate particular 
class trends, overall accuracies, omission and commission errors, and misclassification 
patterns across the study region. Results show a range of class level agreement (0.3%-
92%) and moderate overall general agreement (41%). Example Figure RS1 and Table 
RS1 illustrate classification patterns and a confusion table for Africover and GLC2000.  
 

 
Figure RS1. GLC2000 (left) and Africover (right) aggregated into same classification 
scheme. Forest:dark green, woodland/shrubland:light green, grassland:orange, 
agriculture:yellow, barren:grey, water:blue, and urban:red. 
 
 
Table RS1. General agreement between Africover and GLC2000 in East Africa study 
area. 

          GLC2000         
Africover   1 2 3 4 5 6 7 row total 

forest 1 4264900 10558200 975500 3255200 900 81100 5800 19141600



woodland/shrubland 2 3413500 7414300 14458500 7950100 4600 48400 1300 33290700
grassland 3 1770400 7385300 25741900 9186200 63300 350700 1300 44499100

agriculture 4 10581000 21437300 10115600 24947300 10800 338300 32600 67462900
barren 5 108100 241300 4017400 296400 15900 163800 900 4843800 
water 6 233300 202800 303500 491100 25500 11868100 1500 13125800
urban 7 82100 177600 100500 227800 300 29300 75100 692700 

column total   20453300 47416800 55712900 46354100 121300 12879700 118500 74327500
 
 
 
The second traditional assessment technique included generating fine scale (resolution) 
data for evaluating products over selected ecological gradients and case studies sites. 
Approximately five hours of oblique video imagery was recorded over two transects 
(combined length of about 900 km) that covered notable ecological gradients associated 
with Mt. Kenya in the north and Mt. Kilimanjaro in the south. A Cessna U206C aircraft 
was flown at an altitude of 1000 meters above ground level as indicated by the radar 
altimeter. A GPS unit (Garmin GPS V) fitted with a high gain, low-battery-draw external 
antenna (Mighty Mouse II) internally recorded the flight tract and placed geographic 
coordinates and heading information on each video frame using a GPS video overlay unit 
(SeaViewer Sea-Trak). The digital video data was used as a reference source to assess 
land product accuracies and land surface biophysical characteristics. 
 
In summary the video assessment techniques found agricultural land uses generated 
substantial errors and disagreement in the remote sensing LULC products. Agricultural 
land parcels typically exhibit ranging attributes and characteristics. The spatial 
distribution of crops, leaf type and phenology, management intensity gradients, and cover 
density commonly vary widely from location to location. Although difficult to capture in 
a LULC product, this is the reality of land surface conditions in the region. The digital 
video data showed natural land categories in this region, such as tree-savanna, shrubland, 
or grassland, all to exhibit large amounts of biophysical variation as well. In the selected 
flight lines is not uncommon in this region for a relatively small agricultural parcel to be 
surrounded by other land types. These small agricultural fields were not identified well in 
land products that used coarse imagery. Products that had initial classifications schemes 
emphasizing land use categories, specifically agricultural characteristics, tended to have 
higher accuracies. A manuscript has been submitted to International Journal of Remote 
Sensing for publication consideration that summarized these findings. 
 
Due to the limitations of traditional assessment metrics a new evaluation measure was 
developed. The new statistic, termed Q, was designed to evaluate land products based on 
biophysical characteristics of the land surface at different scales. The method spatially 
aggregates within-class Leaf Area Index (LAI) variation over any time period. For our 
CLIP project we used a two year time span to capture phenological dynamics.  
 
A smaller mean Q value for a LULC product indicates the more consistent biophysical 
structure within a class and the more precise for climate modeling. The evaluation 
executed for CLIP was conducted at three different spatial scales corresponding to 



30×30, 50×50 and 100×100 km quadrats. Based on Q values, we found that GLC2000 is 
significantly lower than LEAF which is the default land characterization in RAMS. For 
the evaluation in East Africa using two year LAI the statistic ranks MODIS IGBP better 
than Africover, which ranks better than OGE. In theory, the Q statistic can be adjusted to 
use any remote sensing product for any time period on any scale.  
 
RS Phenology: 
 
Within the RAMS model, vegetation phenology was modeled as a function of latitude 
and longitude of a simple sine and cosine functions. While in reality, vegetation 
phenology varies with location weather conditions and local elevations. Depending on the 
precipitation pattern, vegetation may have different seasonality even though they are at 
the same latitude. To capture seasonality for each land cover type at each geographic 
location, spline techniques were applied to a four-year record of leaf area index (LAI) 
derived from MODIS products. The spline technique generated a set of coefficients for 
each geographic location (the RAMS simulation grid cell) that can be read into the 
RAMS model for improved modeling. The spline curves showed a significant deviation 
from those since or cosine curves that otherwise would have been used in the RAMS 
model. Because of better and more accurate representation of the vegetation phenology of 
the region, the regional climate simulation is expected to have better representations of 
the climate conditions of the study area. (See below of improved simulation). 
 
LULC-RS Product Simulations 
The impact of LULC product choice needs to be assessed in order to evaluate the 
importance the role land surface parameters play in climate-land modeling. Further, 
human land use land cover changes can be assessed by simulating multiple land use and 
land covers incorporating change aspects. Each of the different products has different 
land surface parameters modeling radiation absorption, exchanges of sensible and latent 
heat between land and atmosphere, storage of energy, and physical surface 
characteristics. Short run simulations of the LULC products in RAMS were carried out to 
examine climate model parameterization capabilities and impacts of artificial LULC 
changes. An example of a specific objective under the product simulations was to 
compare land surface temperature simulations among LULCs. 
 The products were used for a 5 month time span in 2003 using RAMS version 
4.4. All of the simulations were performed on a nested grid configuration. The outer grid 
has 34 × 40 points at 80km intervals, while the inner grid has 62 × 62 points at 20km 
intervals. Both grids extended over 32 vertical levels, with the lowest atmosphere level 
located at 50m above ground level. A 60 second time step was employed for the outer 
domain, and 20 second time step for the inner domain. Initial grid lateral boundary 
conditions were provided by the NCEP-NCAR global reanalysis dataset. The Kain-
Fritsch scheme was used to parameterize on the model grids. The surface energy budget 
is represented by LEAF-2, which represents land surface biophysical characteristics 
within RAMS and partitions net radiation into sensible, latent, and soil heat fluxes.  
 The inner domain temperature from RAMS using OGE (Fig RS2a) was compared 
with MODIS land surface temperature (LST) product (MOD11C2) (Fig RS2b).  Fig. RS2 
qualitatively illustrates similar spatial patterns. MODIS LST maps the temperatures of 



soil and vegetation on the land surface at 0.05 degree pixel size. RAMS produces a 
couple of surface temperature variables. The cell averaged vegetation temperature 
generated from RAMS was used to compare results. Observation time for MODIS LST at 
this location is approximately 8:30 UTC, while RAMS vegetation temperature was 
calculated for 9:00 UTC. Both temperatures are averaged over a five month period: Feb 
to Jun in 2003. The differences in generated parameters between simulation results and 
validation products make direct comparisons challenging. Thus examining their spatial 
patterns is more appropriate. Overall, RAMS vegetation temperature has captured the 
general spatial pattern displayed by MODIS LST. Temperatures near the eastern edge 
and western edge are higher than that in the center of the study region. However, MODIS 
temperature at three locations (north and southeast of Lake Victoria and southwest 
portion of the study area) are much higher than the corresponding RAMS temperature. In 
these three places the major land cover types are open grassland and croplands, 
vegetation density is relatively low. RAMS vegetation temperature in these locations 
possibly underestimates the reality. 
 RAMS temperature results in the inner domain from the simulations were 
compared to study the effects of different land cover products on the regional climate 
simulations. For this comparison, screen surface temperature (2m above surface) was 
used. First, five month screen temperatures at 9:00 UTC were averaged for each of land 
product simulations. Then averaged screen temperature from the first simulation (OGE) 
was used to subtract that from the second (GLC2000) and the third (MODIS) simulations. 
Two difference maps between land cover products generated surface temperatures over 
the study area are illustrated in Fig. RS3. Figure RS3a is the difference between OGE and 
GLC2000 (TGLC-TOGE) and Figure RS3b is the difference between OGE and MODIS 
(TMOD-TOGE). For Figure RS3a, the maximum, minimum, and mean differences are 
5.9, -9.7 and -0.06 Fahrenheit degrees respectively. In the western portion of the study 
area higher temperatures are produced by OGE. For Figure RS3b, the maximum, 
minimum and mean differences are 3.4, -11.3 and -1.1 Fahrenheit degrees respectively. 
In Fig. RS3 the southwestern portion of the study area OGE has higher temperatures 
present.  
 



 
  

Figure RS2: Five month (Feb – Jun) averaged vegetation temperature (a) and 
five month averaged MODIS land surface temperature (b). The units are Fahrenheit 

degrees. 
 
  
 

 
Figure 3: Five monthly (Feb – Jun) averaged difference of screen (2m) temperature 

between simulations using OGE and GLC2000 (a) and between simulations using OGE 
and MODIS IGBP(b). The units are Fahrenheit degrees. 

 
 
Dataset Generation and Project Connections 



A large effort has been to integrate remotely sensed products with other various activities 
CLIP is undertaking. Working closely with other subgroups, specialized datasets have 
been developed to parameterize models operating in CLIP to East Africa conditions. A 
variety of products from the NASA Earth Observing System, Landsat, SPOT, MODIS, 
TRMM/TMI, aerial flights, and others have been processed, developed, organized, and 
integrated. These include Leaf Area Index, Land Surface Temperature, Albedo, Land Use 
Land Cover Change, Fractional Cover, Precipitation, Enhanced Vegetation Index, Net 
Primary Production, and others. All of which have been developed at a range of spatial 
and temporal scales. These dataset and specialized hybrids will improve analysis and 
model simulations for many of the CLIP activities. 
 
 
Land cover variability:  
Model simulations have been performed with the LPJ (Lund-Potsdam-Jena) dynamic 
vegetation model over East Africa to investigate 20th century land cover variability. The 
model has been driven by CRU05 monthly gridded climate dataset at 0.5° by 0.5° 
resolution for the entire East African domain for the period 1901-2002. Annual output of 
land-cover types, vegetation and soil carbon and hydrology have been produced. 
 
A comparison of land-cover types and carbon fluxes between 1901 and 2002 has been 
performed. A decline in C4 grass as the dominant plant type has been simulated as a 
result of wetter conditions in model year 2002 compared to 1901. Since the 1920s there 
has been and substantial increase in vegetation and soil carbon and NPP for the entire 
regions.  Carbon fluxes due to fire are highly variable over the 100-year period. 
Future work will examine a) land cover and carbon trends over the 20th century and b) 
land cover and carbon variations due to wet and dry conditions associated with El Niño 
Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events in the 20th century 
for different climatic regions within East Africa. This work will be performed in 
collaboration with colleagues Clair Hansen and Declan Conway at the University of East 
Anglia, UK.  
 
Sensitivity to climate: 
Further simulations have been performed to test LPJ model sensitivity to the underlying 
climate and its spatial and temporal resolution. Simulations were performed using a) 
daily and b) monthly station climate data from 10 East African stations (courtesy of P. 
Thornton). Simulations varied with weather station varying between 7-40 years. Annual 
vegetation, soil and hydrology output has been archived.     
 Analysis of these simulations will enable an evaluation of: 
a) Vegetation model sensitivity to the spatial scale of the input climate data: gridded vs. 
station data 
b) Vegetation model sensitivity to the temporal scale of the input climate data: monthly 
vs. daily climate data. 
Preliminary analysis suggests strong sensitivity of carbon (vegetation and soil) fluxes to 
both the spatial and temporal scale of the driving climate data.  
 
 



This work will be written up for publication in peer-reviewed journals in 2006. 
 
 
Land Use 
1) 
The data collected in the initial phases of the project has been used in conjunction with 
remotely sensed imagery and additional field verification in the preparation of a land 
cover map that provides a more region specific portrayal of land cover than pre-existing 
coverages (see discussion above). 
 
2) 
The analyses of land use change processes and patterns have been continued and specific 
attention has been paid to the political ecology of three important processes – migration, 
urbanization and fuelwood/deforestation, (around 90% of urban populations use charcoal 
made from native tree species for all their cooking).  The outcomes of the variety of land 
use studies have been applied in the parameterization of the land use change models and 
are one basis for assessment of model performance (see below).  
 
3) 
Two versions of LTM output for the region have been developed to date (Sept 2005).  
Both version produce rain fed crop expansion from current to 2040 at five year time 
steps. Data from the UN Population Projection Forecasts (2004 revision) were used to 
determine future amounts of rainfed crop use.  An urban change model is also under 
development. 
The CLIP LTM version has required developing new approaches to modeling in areas 
where land use change data do not exist.  First, we have developed an LTM potential 
version of the model that allows the neural network to learn about the current location of 
a use based on spatial input drivers (e.g., elevation, meteorological information like 
rainfall, temperature, etc).  Previous versions of the model worked solely on change 
maps. Second, calibration tools that are used to judge model performance (Kappa, 
receiver operator characteristic curves) needed to rewritten so that inputs to these tools 
work on one time map rather than on two maps that produce a change map.  
Recent work has also shown that the number of training cycles greatly influences model 
performance based on accuracy of location, probability distribution and the shapes of 
resulting uses in the landscape (Pijanowski et al., 2005).  We have now found that most 
simulations in East Africa take around 250,000 cycles to produce reasonable output.  
Areas in the United States require 40,000-60,000 cycles to produce adequate results (e.g., 
Kappas > 0.6). 
One of the more interesting results of the LTM modeling has been the discovery that 
rain-fed agricultural potential modeling produces adequate results at fairly coarse cell-
size resolutions of 1km.  Modeling of urban spatial location and pattern performed very 
poorly (Kappas near 0.0) for all major urban centers in the region (Nairobi, Dar es 
Saalam and Kampala).  A model for Nairobi composed of 90m cells parameterized using 
the same spatial drivers (e.g., distance to road, distance from town center) produced 
reliable model output (Kappas > 0.68).  Thus, a tipping point of model accuracy exists 
somewhere between 90m and 1km where resolution size begins to degrade model 



accuracy.  These are exciting results as it indicates that there are significant scale issues 
that need to be addressed in modeling different land uses, especially at large regional 
scales such as East Africa.  
We have also been able to produce a set of LTM outputs that randomly assign locations 
of change but produce maps in the amount of rainfed agriculture anticipated from our 
forecast “demand” model based on the UN Population forecasts.  We intend to use these 
to determine whether a random model has any impact on regional climate-land 
interactions compared to a spatially explicit model of land use change.  
We intend to use the expert system maps generated from the 2004 local workshops to 
compare these projections.  We will likely need to develop a set of qualitative and 
quantitative metrics to characterize these differences.  We also intend to use the Likert 
scale weights provided by the experts to create another set of projections that can be used 
as part of a larger collection of “ensemble of model runs” that can be summarized 
conceptually for use in decision making and comparing different scenarios.  We have 
outlined a “future space” concept that allows us to quantify a set of model ensemble run.   
Many of our routines have in the past been conducted by hand either in the GIS or using 
the neural net software.  We have now automated over two dozen steps in the GIS, 
statistical packages and using the neural network batch routines.  This increases our 
ability to select the best model from a large neural net simulation entailing hundreds of 
thousands to millions of cycles and to examine model performance behavior across these 
simulations. 

 
As part of a related study, Pijanowski and his group have embarked on a spatially-explicit 
population model that would help us to examine how large shifts in gender spatial 
distribution, effects of conflict, changes in fertility transitions, etc. would affect land use 
change at large scales.  The model is being developed for the study area, and other areas 
around the world (e.g., Nepal, Costa Rica).   We have begun to interact with scholars in 
this field, including Waldorf at Purdue and Sweeny at UC Santa Barbara.  
 
4) Our Role Play Simulation (RPS) is being written up for submission to the Journal of 
Artificial Simulation of Social Systems (JASSS).  We argue that the RPS exercise helps 
us to: (1) prioritize spatial drivers for inputs to a reduced form land use change model, 
such as our the neural net based LTM; (2) understand human behavior as it relates to the 
parameterization and testing of our agent based model, MABEL; (3) investigate 
important factors that are difficult to model, such as wildlife-human conflict, and 
determine it’s role in developing social models. Future work will focus on how we can 
use the RPS to parameterize a MABEL-type agent based model to test our understanding 
of how biophysical and socioeconomic factors influence human behavior and social 
interaction.  
 
 
5) Advancements in an agent-based model (MABEL) that simulates land-bidding-land 
division behavior using Bayesian Belief Networks and GIS have been made so that the 
model uses the highly irregularly shaped land use/parcels in our case study regions.  A set 
of spatial metrics and temporal agent-goals were applied to the case study regions in East 
Africa and compared to regions in the United States.   Two papers have been published 



on this aspect of the model.  One of these papers (Alexandridis and Pijanowski in press) 
explored how a Monte Carlo approach can be used to examine the behavior of the model 
using a stochastic approach to model parameterization and the other (Lei et al, 2005) 
describes how tools are integrated to simulation agent behavior in a spatial context.  A 
third paper has been submitted to Ecological Economics that outlines the core MABEL 
model and showcases some of the model components (e.g., Bayesian Belief Networks, 
land-bidding and agent-agent interaction)  
 
6) The Land Transformation Model (LTM) has been subjected to a battery of 
performance tests using several large regions in the United States.  We have recent 
published on paper in the International Journal of Geographic Information Science that 
describes how we use a scaleable window metric, Kappa statistic, shape metrics (e.g., 
FRAGSTATS) and transition independent statistics (e.g., receiver operator characteristic) 
to judge model performance. We found that neural networks perform well in most 
situations, improve performance when training is extensive (e.g., over 60,000 cycles) and 
when locations used to train the model have had considerable about of change (e.g., > 
25%). We have now developed code that calculates these metrics for a variety of training 
cycles storing them in a format for large scale analysis (i.e., so that we may compare 
thousands to millions of different LTM models generated by the neural network).  New 
metrics are also being developed (Bayesian classifiers) that quantify how well the model 
predicts the distribution of patch sizes across the landscape.  A draft of a paper has been 
completed, with a German scientist as co-author, that examines how well the model 
performs in landscapes where the amount of change varies considerable as well as the 
degree of fragmentation.  In brief, we found that the LTM model performed well at very 
large training cycles (~500,000) for patch size distributions that were very small and very 
large; the model did not perform well on mid-size patches of urban use.  
 
7) The Land Transformation Model (LTM) has now been compared to seven other well 
known land use change models (Pontius et al., in review) in a recent IGBP LUCC study.  
Results show that the LTM performs well in areas with highly fragmented land uses but 
does not do as well as other models (e.g., CLUE) in terms of transferability.  The authors 
(Pijanowski is a co-author) argue that more intermodel comparisons are needed that place 
each of the models on “equal ground” as each were developed for specific purposes and 
applied to different areas of the world. 
 

Climate Downscaling Findings 

This has resulted in: 

1. Century to decadal scales for East Africa: Comparison between two 
gridded rainfall products shows that despite efforts to ensure spatial and 
temporal homogeneity, the GPCC grid series do not differ noticeably from 
the CRU TS 2.1 grid series over East Africa. This is likely to be a 
consequence of low density of stations that meet both datasets’ quality 
control criteria in the East African region so that their grid series are based 



on similar station networks. The CRU gridded product indicates that over 
the 1901-2002 period the East African region has experienced different 
trends in annual rainfall. The spatial behaviour of annual linear trends for 
four timeslices show that at the beginning of the 20th Century the western 
part of the region experienced increasing rainfall, this shifted to the north 
during the 1931-60 period, was isolated to the regions of highest 
topography during the 1961-90 period and covered the eastern half of the 
region during the last 12 years of the record.  

2. Sub-regional: Local scale analyses of annual, seasonal and daily rainfall 
characteristics in three sub-regions of East Africa show that it is difficult 
to generalise about temporal variability in these areas of diverse terrain.  
Between the sub-regions there are some similarities, e.g., the seasonal 
regimes are similar in Kenya/Tanzania and Uganda along with some 
differences, e.g., interannual variability; SW Tanzania shows a stronger 
drying trend than the Kenya/Tanzania and Uganda sites.  There is also 
considerable temporal variation within the sub-regions despite the fact that 
most of the stations in each sub-region also lie within regions of temporal 
coherence identified by regionalisation methods.  

3. Station and grid-box scale interannual variability: SW Tanzania shows a 
slight drying trend in annual rainfall with the exception of Mbeya across 
the full station record. This trend is replicated by the GPCC data (1951-
2000) and is also found in both data sets for the overlap period.  The 
Ugandan stations show decreasing rainfall in the most northern locations 
and increases in the most southern stations whilst GPCC shows decreases 
across the Ugandan region. The overlap period for both data sets indicates 
a general decrease in rainfall with the exception of Lyantonde. 
Kenya/Tanzania shows a mixed pattern of increasing and decreasing 
annual rainfall, unrelated to location. A reduction in the length of overlap 
period between the station and GPCC data results in the majority of the 
stations showing a positive trend. Comparison between the GPCC and 
station data shows that in general the GPCC grid boxes replicate the trends 
identified by the station data for the overlap period but are not of equal 
magnitude. 

4. Daily time scales: Analyses based on wet and dry day frequencies in 
Uganda and SW Tanzania reveal decreases in the number of wet days and 
increases in the number of dry days over the record whilst for the 
Kenya/Tanzanian sub-region the number of wet and dry days per year 
tends to be relatively consistent through time. There is no consistent trend 
in the wet day amount or the frequency of heavy rainfall days across the 
three sub-regions, possibly a result of a lack of overlapping data and 
incomplete series. 

5. Cross-Scales analysis: In nearly all cases trends in rainfall are highly 
sensitive to the period over which they are calculated because there are 
few examples of long duration sustained trend in any rainfall statistics. 
Thus, no clear, systematic signal emerges across temporal scales. It is well 
known that for this reason, seasonal climate forecasts need to be tailored 



to particular location specific predictor relationships and that these may be 
subject to interdecadal variability. This spatial and temporal heterogeneity 
highlights the difficulty of generalising the interactions between climate 
and, biophysical and socio-economic systems in the region. 

Climate Modelling 
Upon completion of validation (see above), we focused our research activities on 
comparing the default Olson Global Ecosystem (OGE) land cover with a new land cover 
hybrid, which we call CLIPcover.   The first stage of this comparison was to replace the 
spatial distribution of OGE land cover classes with the CLIPcover distribution.  The 
phenological and temporal variability of these land cover classes was not altered at this 
point.  After 1 month of simulations using both land cover schemes, the RMS differences 
in accumulated precipitation compared to TRMM estimates are statistically indistinct.  
Spatially, modeled rainfall reproduced the ITCZ cloud cover but generated much more 
precipitation at higher elevations.  The levels of increased precipitation appear to be 
related to changes in albedo and shifts in large-scale transport of moisture (Figure M1).  
Albedo is not well-correlated with precipitation in the southernmost part of the domain 
and in the Lake Victoria region. These anomalies may be related to differences in upper 
boundary layer winds and lake temperature respectively, but this is still under 
investigation. 
 
 

          
Figure M1. 
Simulated accumulated precipitation           Simulated albedo difference,    difference 
(mm), March 8-31, 2000     March 8-31, 2000 
(CLIPcover minus OGE  cover)          (CLIPcover minus OGE cover)  
 
Integration with Land Cover 



In most atmospheric models, land cover phenology is represented simply as a function on 
latitude and Julian day; this is the case with RAMS.  However, east Africa is unique 
among equatorial regions in its low LAI, lack of dense rainforests, and bimodal rainfall 
pattern.  This sharp departure from typical phenology necessitated an improved 
representation of land cover and a more accurate depiction of vegetation properties—
namely, LAI and fractional cover— over time.  The LAI splines constructed by Lijian 
Yang and Jing Wang clearly capture the bimodal character of east African vegetation, 
particularly for maize farming, and these splines have been incorporated into RAMS.  We 
anticipate reproducing this spline approximation for fractional cover as well in RAMS.  
Figure M2 shows the changes in LAI resulting from the change to CLIPcover, followed 
by the addition of the LAI spline function.   The MODIS image for that same date is 
given for comparison.  Errors in classification still exist, particularly in the southern parts 
of the domain, but the overall representation lf LAI in the model is improved. 



 



Figure M2. LAI for east Africa using OGE cover, CLIPcover, and CLIPCover plus LAI 
spline approximation. MODIS imagery for the same date is provided for comparison. 
Pale blue in the MODIS image represents water or cloud cover. 



Activities and findings:  
Research and Education Activities:  
The major activities of the project in this reporting period have been to develop a region-
appropriate representation of every component of the research framework: climate, crop-
climate, land use, land cover and regional climate modeling. This goal has been 
accomplished together with initial assessment of issues of uncertainty as they apply to 
model development and application. 
 
 
Land Use-Land Cover Activities 
Over the past year, the Land Cover group continued working on the analysis of the land 
use and land cover and the linkages to regional climate. Several key areas that the LC 
group focused on include: 
 
a. Parameterization of regional climate models with remote sensing products. Improved 

land use and land cover data (Torbick et al., 2005, Torbick et al., 2006), pixelized 
vegetation phenology information from remote sensing observations (Wang et al. 
2006), spatial distribution of albedo, total leaf area index, and total fractional 
vegetation cover (Ge et al., 2006) were derived from long term satellite observations 
were parameterized into the most current version of regional climate modeling system 
(RAMS), adjusted for East Africa geographic domain. The purpose was to improve 
the parameterization of the RAMS model for more accurate simulation of the regional 
climate condition under various land use and land cover change scenarios, thus 
reducing the model uncertainty in simulating the regional climate.  

b. Quantification of LULC uncertainties derived from remotely sensed images and 
analysis of the error propagation to regional climate model (RAMS). Two major 
conclusions were reached in this analysis. The first one is that there exist significant 
inconsistencies among the current land use and land cover products, used in regional 
climate models, that would result in significant uncertainties in regional climate 
model simulations (Qi et al., 2005). The second conclusion we reached was that there 
is a threshold of land use and land cover accuracy (80%). When uncertainty or errors 
in LULC reaches more than 20% regional climate model simulations may not be 
reliable (Ge et al., 2006).  

c. Analysis of sensitivity of regional climate change to land degradation. Although 
many studies suggest that land use and cover change can result in changes in regional 
climate, quantification of the magnitude of change required to result in significant 
change in climate simulation has not been done. Furthermore, past studies focused on 
the impacts of categorical changes in land use and land cover, little has been done to 
quantify subtle changes in land surface attributes such as degradation. An example is 
the degradation of grassland that does not result in land use conversion (Grassland 
remain grassland but total fractional vegetative cover has been significantly reduced 
due to overgrazing, for example). Preliminary test indicate that this non-categorical 
changes can result in significant differences in regional climate model simulations 
(Ge et al., 2006). 

d. Changes in land use and land cover, including reduction in vegetation cover and 
retreating of snow covers in high altitude mountains, are assumed to be caused by 



both regional climate change and human impacts. However, little research has been 
done or has been successful in discerning the two drivers. Using a long term satellite 
observation records, a study carried out by the LC group suggested that the two 
driving forces can be separated by examining the changes in green vegetation 
indicator, NDVI, at different elevations (Torbick et al., 2006), thus providing a 
feasible approach to discern the two driving forces. 

 
Land Use 
I. Case Study Sites and Regional CLIPcover Assessment 
We have taken the land use/cover data for each of the case study sites (see Figure 1) and 
compared the land use/cover classes to that of CLIPcover.  We used the cross tabulation 
function (TABULATEAREA) between the case study sites contained in a grid format 
and registered to the 1km CLIPcover database.  We also calculated total area in each 
class for the study sites and compared the total area for each class in CLIPcover.  
 

 
 
Figure 1. Location of the study sites conducted in our land use/cover map agreement 
analysis. 
 
Figure 2 shows an example cross tabulation table for the cast study site Mburo, Uganda.  
The cross tabulation was performed on both the 1955 and 1995 land use/cover data and 
the CLIPcover for 2000 (labeled at LC2000). This particular table, adjusted to percent 
total area, shows that over one third of the scrub/woodland in the case study site database 
is cultivated in the regional CLIPcover.  

 



 
 
Figure 2. A cross tabulation of land use/covers in the case study and CLIPcover 
databases. 
 
An example analysis for land use/cover class quantity is shown in Figure 3 below for 
Rubale.  In this particular case, the amount of cropland in both agrees well.  
 

 
 

Figure 3. An example land use/cover quantity analysis that examines the area occupied 
in each land use/cover class in the case study and CLIPcover databases. 
 
This analysis serves several purposes.  First, as we scale up from the case study sites to 
the region, we need to know how well the data match between scales and across the case 
study sites.  Second, models developed at the smaller case study site need to be compared 
against the regional model and a cross walk of land cover types might be necessary to test 



model goodness of fit.  Finally, methods developed between spatial scales could be 
applied to broader uncertainty analysis conducted project wide.   

 
II. LTM Outcome Assessment 
We have developed version 2 of our LTM model during the last year. This version has 
the following characteristics: 

1. 12 drivers of rainfed agriculture (distance to big cities over 1m, distance to 
national parks, distance to surface water, distance to roads in three categories 
(A, B and C), distance to major cities (50K-1m), distance to towns (less than 
50K), distance to permanent streams, slope, topography (concave to convex), 
and annual precipitation) 

2. CLIPcover in 34 categories of land use/cover in 1km raster grid file 
3. Urban expansion that is proportional to population increases, but only 

projected for increases in urban areas 
4. Agricultural expansion that is proportional to population increases in both 

urban and rural areas 
5. Climate inputs from a 0.5 x 0.5 30 year meteorological database for the 

continent of Africa; we used average annual precipitation 
6. No input from a crop production or CERES-Maize yield/NPP estimates 
7. No input from any soils databases 

 
The model was configured differently than in the past (Pijanowski et al., 2002, 2005); the 
output for our model was not the presence or absence of change from two time periods 
but rather the presence or absence of rainfed agriculture. As such, we refer to this type of 
LTM parameterization as a potential version of the model (as opposed to a change 
version).  Figure 4 shows the projections of agriculture in 5 year time steps from current 
(2000) to 2050.  
 



 
 
Figure 4. LTM results for agricultural expansion from 2000 to 2050; shown are 2010, 
2020 and 2040. 
 
We also explored three different ways to expand urban into the future. This included the 
use of a neural network potential version, an MCE version where weights were assigned 
on the basis of pair-wise rankings following Voogd (1983) and a simple gravity model.  
For the MCE (Figure 5), we have concentrated our work on a small area representing 
Nairobi and surrounding towns. Here, expert judgment is used to assign the weights, such 
as distance to previous urban, distance to roads, to create a spatial probability map of 
change. 
 



 
 
Figure 5. Spatial drivers for the Nairobi MCE urbanization model.  
 
Our current MCE urban expansion model uses the following drivers: distance to previous 
urban, focal sum of urban (small neighborhood), focalsum of urban (large neighborhood), 
and distance to roads in three classes (A, B and C) see Figure 6.   
 

 
Figure 6. MCE results for urban expansion around Nairobi. 
 
We are currently exploring other methods to expand urban as well as determine whether a 
high degree of accuracy of spatial pattern of expansion is necessary for inputs into the 
RAMS simulation.  We have used the MCE model developed for Nairobi and expanded it 
to the entire region at 5 year time steps.  Figure 7 shows the results of applying the MCE 
model to all of Uganda (year 2050 shown). 



 
 
 
Figure 7. The urban expansion MCE model for 2050 for Uganda. 
 
We have also examined what current land use/covers the 2050 LTM projections of ag and 
urban expansion will replace.  This analysis was done at the regional and country scale.  
One example analysis is provided for Kenya in Figure 8. 
 

 
Figure 8. Land use/cover amounts for current (CLIPcover) and LTM 2050 projections. 
 
Figure 8 shows that as urban and agriculture expand (red arrows) some other classes, 
such as woodlands and evergreen broadleaf, will be lost.  These are expected transitions.  
Some transitions, however, need further assessment; for example, the loss of desert (like 



to either agricultural or urban expansion) is a bit troublesome although this represents a 
very small proportion of change across the entire region.  
 
III. LTM to RAMS uncertainty analysis 
 
1. Uncertainty Bin Analysis 
 
We have developed a neural net outcome uncertainty metric, ψ, for the presence/absence 
of a land use/cover class that is scaled to each climate box.  This metric is being 
developed to help us ascertain the amount of variability in quality of output from the 1km 
LTM that is passed to the 36km climate grids in RAMS. We used the GIS derived inputs 
to train on the presence/absence of rainfed agriculture (Figure 9) in the region.  The 
neural network weights from the training exercise were then applied to the inputs during 
the testing exercise to estimate the probability of occurrence for rainfed agriculture, 
which we call outcome probabilities.  Figure 9 shows the distribution of the outcome 
probabilities as they range from 0-1.0 (they are scaled to integer values of 0-10,000 in the 
GIS).  Values near 1.0 reflect that the neural net has assigned a high certainty to that 
location that it should be in the rainfed agriculture class. Values near 0 are locations that 
are most unlikely to have rainfed agriculture based on the inputs.  On the other hand, 
values near the center of the probability distribution contain locations that the neural 
network does not have a high degree of certainty that the cells fall in either binary 
category.  Our uncertainty metric, ψ, is calculated as the sum of the proportion (note: we 
use percentages and proportions interchangeably here) of cells in the upper and lower 
probability bins (we call these two as high certainty bins) subtracted by the proportion of 
cells in the middle probability bins (i.e., the uncertainty bin).  We sum the proportions of 
cells in upper, lower and middle outcome probability bins in increments of 0.05 such that: 
 

Ψi,j = Ui,i + Li,j - Mi,j
 
Where U, L and M are the proportion of cells in the  i climate grid box in the upper, 
lower and middle outcome probabilities, respectively, in bins of size j.  We calculated Ψi,j 
for probability bins in 0.05 increments so that for the case of j = 0.05, the proportion of 
cells in the i climate box with values 0.95-1.0 and 0.0-0.5 are summed, divided by the 
total number of cells in the climate grid (note: there are slight variations of the size of the 
climate grid across the region due to use of a non equal area projection used by RAMS) 
and then subtracted from the proportion of cells in the climate box that fall in the middle 
range of 0.45-0.55.  Figure 9 provides an illustration of the outcome probabilities for one 
LTM simulation where U, L and M outcome probabilities bins are shown. Ψi,j can range 
from +100% to -100% where +100% represents a climate grid that contains cells only in 
the U and L bins; -100% represent climate grids that have cell values in the middle only.   



 
Figure 9. An example LTM outcome probability distribution also showing U, L and M 
boundaries. 
 
Figure 10 contains outcome uncertainty maps for climate grids in 5% increments from 
5% to 25%.  Figure XF displays a map of outcome probabilities for the original 1km 
LTM grid, values from this map were used in the calculation of Ψi,j for maps A-E.  In 
these maps, climate grid boxes that are green have the greatest number of cells in the 
uncertainty bin; those that are red have the most number of cells in the high certainty 
bins.  Figure XA shows a map for j=5%.  Note that the green areas are located on the 
periphery of current rainfed agriculture areas, and locations of red are generally areas that 
are currently desert or contain rainfall that is very unlikely to support any crops. As we 
move to j=10%, we see more red colored climate grids because more cells are placed in 
these larger certainty bins.  Once the 25% bin is reached, all cells from the outcome 
probability map for each climate grid are placed in either the uncertainty or certainty bin 
(i.e., when j= 0.25, then U=75-100%; L=0-25%; M=25-75%). 
 



 
Figure 10. Uncertainty Ψi,j values for each RAMS climate grid. 
 
2. Omission/Co-mission errors and Scaleable Window Analysis 
 
Following earlier work by Pijanowski (2002, 2005, in press), we compared how well the 
predicted current rainfed map from the LTM simulation the model fit to CLIPcover 
rainfed agriculture.  We used the GIS to create a raster map, which we call a 01234 grid, 
with the following codes: 
 
 0 = LTM did not predict rainfed ag/CLIPcover assignment was not rainfed ag 

(correct assignment) 
 1= LTM predicted rainfed ag/CLIP cover assignment was not rainfed ag (co-

mission error) 
 2 = LTM did no predict rainfed ag/CLIPcover assignment was rainfed ag 

(omission error) 
 3 = LTM predicted rainfed ag/CLIPcover assignment was rainfed ag (correct 

assignment)  
 4 = areas where rainfed ag cannot go (e.g., current urban and open water) 
 
In previous work, Pijanowski (2002, 2005) used the ratio of the number of 3s in the raster 
map divided by original number of cells contained in the map for the category (e.g., 
rainfed) of interest as a metrics of model goodness of fit.  This metric is expressed as a 
percentage and is referred to as the Percent Correct Metric or PCM.  We also used a 
scaleable window technique similar to Costanza and Sklar (1992) and Pontius (2005) 
where a stepwise square window size is used to combine pairs of omission and 



commission errors occurring within the same window into correct cells.  The proportion 
of 3s then increases with increasing window size.  Certain window size thresholds are 
examined across simulations; such as the windows size where the proportion of correct 
cells surpasses incorrect cells (see Pijanowski 2005).  Here, we were interested in the 
proportion correct within the climate grid size of 36km.  Note from the Figure 11 below 
that there is a slight increase in model goodness of fit between the 1km and 36km results 
(63% versus 73% respectively). 

 
 

Figure11. The PCMs across scaleable window sizes form the analysis of the 01234 maps. 
 
3. Driver Sensitivity Analysis Across Spatial Scales 
 
We also ran reduced variable neural network models following the procedure of 
Pijanowski (2002) to determine the effects of individual drivers on the outcome.  
Separate 01234 grids were then used to calculate PCMs for each window size.  The PCM 
for each reduced variable model (12 models of 11 variables) were then subtracted from 
the value of the PCM for the full variable model (12 drivers) at each window size.  This 
plot is given in Figure 12.  Note that on the y-axis, the value of 0.0 represents a condition 
that there no difference in the full and the reduced variable model; positive values 
represent the proportional increase in model goodness of fit by keeping that one variable; 
a negative value represents a condition that the variable of interest reduces overall model 
goodness of fit.  The x-axis is the window size; the size of the RAMS climate box is 
indicated with the horizontal bar at 36km. 
 
Note (Figure 12) that nearly all variables (i.e., drivers) contribute toward a better fit 
model. Roads of category C (i.e., rural roads) have the greatest influence, followed by 
distance to small towns (i.e., market centers).  Also note that distance to town is also very 
sensitive to scale, the ∆PCM rises quickly and plateaus around 15km.  Interestingly, 
precipitation hampers the model goodness of fit; the ∆PCM is negative for all window 
sizes. Precipitation for this particular simulation was from a coarse 0.5 degree database of 
30 year precipitation averages.  It is possible that the coarseness of the data introduced 
errors in the training of the data as 0.5 degree represents about a 60km pixel and our 



rainfed agriculture presence/absence map was presented to the neural net using 1km 
pixels.  
 

 
 

Figure 12. Drop-one-out and scaleable window analysis for the LTM rainfed simulations. 
 
4. Neural Network Training Cycles 
 
One unique feature of neural networks is their ability to learn from patterns in data.  They 
use a delta function to adjust weights that are passed through a nonlinear function called 
an activation function that fits inputs (drivers) to outputs (the presence/absence of rainfed 
agriculture).  The weights, initially assigned to random values, are adjusted during the 
simulation, each pass through the data is called a cycle.  Pijanowski (in press) has shown 
that the neural networks improve their overall fit to the data during the course of the 
simulation and that following metrics such as the PCM model goodness of fit is useful to 
determining when to stop training.  We examined each of the above metrics (PCM, 
scaleable window size) combined with the reduced variable analysis.  We have started to 
visualize these complex metrics using 3D plots in R and Matlab (Figure 13).  Note that 
PCM increases from about 0.63 during the start of the simulation to around 0.80 after 
250,000 cycles (note: this simulation takes about 8 weeks). There is a greater increase in 
model goodness of fit early on in the training than, viz., later. 
 



 
 
Figure 13. Visualization of the PCM across window sizes and across reduced variable 
LTM simulations. 
 
5. Hierarchical Quantity and Location Error Assessment 
 
A final uncertainty analysis examining the error associated with LTM-RAMS coupling 
that has been started involves the development of a metric that calculates the quantity 
error associated with LTM projections to RAMS.  To illustrate how this metric works, 
one needs to consider that for any climate grid cell, the LTM will select the number of 
agriculture cells that should transition from another alterative land cover class. In some 
cases, the LTM will predict more or less cells to be in the agriculture class compared to 
CLIPcover.  The quantity error can be assessed as another PCM, which we call PCMq, 
but not of the type of location (see Pontius 2005 for the importance of quantity and 
location errors).  
 
Figure 14 shows a grid of our hierarchical boxes that we will calculate PCMq across the 
boxes.  We plan to summarize PCMq across the box sizes using a mean and coefficient of 
variation.   



 
 
Figure 14. The polygon grid hierarchy scaling for use in the PCMq analysis for grid 
boxes of size 3km to 1044km.  Boxes outside the modeling domain are excluded.  
 
IV. CERES-Maize to CLIPcover/LTM Coupling 
 
We have begun to take preliminary CERES-Maize output and examine how the crop 
simulations will be used as eventually input to the LTM.  Our plan is to use maize yields 
for the six different cumulative probability cutoff points as separate inputs to the neural 
net based LTM.  A set of separate CERES Maize simulations with optimal conditions 
(i.e., no limitations from soil and climate) were run to estimate the maximum possible 
yield that could be obtained in the future given technology enhancements.  These 
simulations produced values that allowed us to normalize the CERES-Maize yield 
estimates so that values of 0.0 through 1.0 would always be obtained.  These values will 
be hard coded in the LTM as we begin to process the data for input for version 3.   
 
Prior to input into the LTM however, the point based CERES-Maize simulations that are 
run at 18km spacing (see Figure 16) need to be converted to a 1km grid and registered to 
the LTM modeling raster map. We have investigated several interpolation methods 
(spline, idw, polynomial interpolation) and we have currently decided to use a local 
polynomial interpolation method (Figure 17).  



 
 

Figure 16. The locations of CERES-Maize simulations (N=7710).  Colors represent 
relative yield potential (red = high; yellow = low). 



 
 
Figure 17. CERES-Maize yields interpolated using a LPI method in ArcGIS 9.1 
geospatial analyst.  Shown are the cdpf cutoffs for different probability thresholds.  
 
Values in red represent negative (not possible) yields which will be converted to 0.0 
using the GIS prior to input to the LTM. 
 
A method to determine how well the CERES-Maize yields match with the presence and 
absence of rainfed crops was developed in the last year as well.  An example analysis of 
this overlay is shown in Figure 18 below.  Note that most cells that contain high CERES-
Maize yields (i.e., greater than 2100) are represented as rainfed agriculture in CLIPcover.  
In contrast, areas with low yield estimates are rarely (less than 5% occurrences in 
CLIPcover) rainfed agriculture.   
 



 
 
Figure 18. Rainfed presence/absence and CERES-Maize yield overlay method.  
 
V. Role Playing Simulation 
Two major activities have focused on the RPS.  First, we conducted another RPS at 
Purdue University (April 2006) as part of a PhD trial simulation for a new graduate 
student of Dr. Pijanowski.  The RPS was a redesigned simulation that allowed the 
researchers to follow the simulation on a gridded sheet representing the same map as the 
original Campbell and Palutikof (1978) simulation. We also captured decisions at each 
time step and allowed players to make economic transactions using fake money.  The 
results of this simulation are being written up. 
 
Our second activity focused on synthesizing the June 2004 RPS held in Kenya.  We 
currently have a draft paper for publication that describes the results of this RPS. In order 
to reach this stage, we had to digitize all of the maps (8) produced by the RPS 
participants and then conduct a GIS analysis of the outcomes.  We used the GIS to create 
overlays of the two scenarios (land use adjudication without a park and one with the 
introduction of a park around the limited natural resource, a lake).  In the paper, we 
present the argument that RPS can help support the development and testing of spatially 
explicit models of two types: reduced form and structural models (Figure 19).   
 



 
 
Figure 19. How RPS can help support the development and validation of quantitative 
land change models.  
 
To develop the maps for use in modeling, we took the original RPS maps shown in 
Figure 20 (Figure 6 from the draft paper) and digitized main features and land use 
boundaries drawn by the participants (see the GIS version in Figure 21).  All digitized 
maps have been placed into ArcGIS.  
 

 
 



Figure 20. The hand drawn map for the Tuai herders prior to the introduction of the 
wildlife park. 
 
 
 

 
 
Figure 21. GIS map of the Tuai herder land area selected by the group participants. 
 
 
Present-day and future vegetation modelling: 
 
A number of model simulations have been performed with the LPJ (Lund-Potsdam-Jena) 
dynamic vegetation model: 
 
1) Simulations testing LPJ model sensitivity to the underlying climate and its spatial and 
temporal resolution. Simulations were performed using a) daily and b) monthly station 
climate data from 10 East African stations (courtesy of P. Thornton). 
2) 20th and 21st century simulations using 19 realisations from 9 state-of-the –art GCM 
performed in support of the latest IPCC 4th assessment. 
 
 Annual output of land-cover types, vegetation and soil carbon and hydrology have been 
produced. 
 
Simulations in 1) above has been used to examine model sensitivity to climate inputs: 
Simulation length varied with weather station varying between 7-40 years. Analysis of 
these simulations will enable an evaluation of: 
a) Vegetation model sensitivity to the spatial scale of the input climate data: gridded vs. 
station data 



b) Vegetation model sensitivity to the temporal scale of the input climate data: monthly 
vs. daily climate data. 
Analysis has shown that: 

• Simulated NPP was generally less variable for the coarser spatial scale CRU 
gridded dataset  

• Simulated NPP, vegetation and soil carbon was often higher using coarser spatial 
scale CRU dataset  

• NPP, and soil and vegetation carbon was always higher for simulations that used 
the lower temporal resolution data: aggregated monthly station values as oppose 
to daily station data 

• Different climate datasets often produced different dominant PFTs  
 

The basis of these results are lower monthly minimum temperatures and higher monthly 
maximum temperatures and greater number of dry days obtained from the daily station 
data values, suggesting that more extreme temperatures and greater water stress periods 
experienced by vegetation yields lower productivity of NPP and soil and vegetation 
carbon. 
 
Simulations in 2) have just been completed. We have discovered a large variation in 
predictions of vegetation and soil carbon with GCM simulations. Further work will 
analyze these results in more regional detail, as well as fitting a Bayesian model of 
uncertainty to the results. Then these results will be written up for publication in a high 
impact journal. A number of climate impacts groups have expressed interest in this work, 
and most recently (sept 25-26th) I hosted a workshop on probabilistic climate impacts 
assessment. 
 
Climate variability in East Africa: 
 
We have assessed the link between East African rainfall, and two large-scale climate 
phenomena: the Indian Ocean Dipole and the Southern Oscillation Index. In observations 
and in 6 different  
 
CROP-CLIMATE (NPP) ACTIVITIES 
NPP part for NSF annual report 2006. 

Spatial analysis of NPP simulations    

Spatial modeling of changes in net primary productivity (NPP), the vegetative response 

to climate change, is being conducted as part of the climate-to-land section of CLIP. One 

of the most dynamic elements of NPP is in the agricultural system as climate change 

affects the biophysical characteristics of crops, and as changes in agricultural productivity 

impact humans and their land use decisions. We investigated the interrelationship 



between the productivity of a representative staple food crop, maize, and climate 

variability and change across the CLIP domain for historical (1901-2002).  The 

deterministic crop simulation model CERES-Maize from the DSSAT V. 4.0 model series 

(Hoogenboom et al. 2004) was used to simulate maize production. The CRU TS 2.1 

climate data set extending from 1901 to 2002 for grids covering the CLIP domain surface 

at 0.5 degree resolution (Mitchell et al. 2003) provided raw monthly temperature and 

precipitation data, which were in turn used as input to MARKSIM software to 

stochastically generate daily weather data series (Jones and Thornton, 2000). Future crop 

simulations (2001-2050) will be carried out with daily climate data from the RAMS 

regional climate model embedded within the CCSM global climate model.  

Representative soils data were obtained from the Food and Agriculture Organization 

digital 1:5,000,000 soil map of the world (FAO, 1974).  Agricultural suitability for maize 

production of all soils in each grid box across the CLIP domain was determined based on 

FAO soil unit ratings (FAO, 1978). For each soil found to be suitable, we assembled a 

file of representative physical soil profile characteristics based on the International Soils 

Reference and Information Centre’s World Inventory of Soil Emission Potentials (WISE) 

data base (Batjes and Bridges, 1994). East African agricultural management information 

was obtained during field surveys and in literature reviews. 

 

Historical maize production in the CLIP domain was simulated under a variety of 

differing combinations of input soils data and agronomic assumptions (e.g. planting date, 

irrigation) in order to determine the relative importance of climate in the production 

system. For example, simulated maize yields for each pixel in the CLIP window using 



appropriate planting dates and FAO soils for the 1901-1930 time frame are given in 

Figure xx. The relatively higher simulated maize yields in western Kenya, western 

sections of Uganda-Burundi-Rwanda and the ‘Hills’ region in southern Tanzania are in 

close agreement with current regional production patterns. Overall, soil type and 

associated water holding capacity across the CLIP domain were found to be of relatively 

greater importance in determining potential crop productivity than is the case in mid-

latitude production areas.  Based on analytical methods suggested by Andresen et al. 

(2001), time series outputs from the simulation studies was used to produce cumulative 

probability distributions (CPD) of crop yield and water balance components. These CPDs 

will in turn become inputs in the land use change model and will provide information on 

how climate change will affect household decisions on crop choice and land use. 

Complementary analyses of the impact of climate change on natural ecosystems are being 

conducted using the Lund Potsdam Jena (LPJ) vegetation model. The results of these 

analyses will also be incorporated into the land use model. 

 Use of low resolution spatially interpolated climate surfaces such as the CRU TS 

2.1 climate data set (0.5 degree resolution) is likely to cause partial loss in the capability 

to capture environmental variability especially in areas with strong climatic gradients 

such as in East Africa. Therefore, we have identified a global gridded high resolution 

climate data known as WorlClim data (at a 30 arc s resolution often referred to as 1–Km 

spatial resolution; Hijmans et al. 2005). We aggregated the WorldClim data to 18 km 

resolution to match with the statistically downscaled high resolution RAMS CLIP data 

which will be used to simulate NPP at future time period.  The new triage at 18 Km 

resolution has 7710 pixels in the CLIP domain as against 653 pixels at 0.5 degree 



resolution. Simulation of maize production in the CLIP domain at higher spatial 

resolution under a variety of differing combinations of input soils data and agronomic 

assumptions (e.g. planting date, irrigation) are in progress. 
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Figure 22. Simulated maize yields for the 1901-1930 time frame using stochastically 
generated daily weather data from CRU TS 2.1 climate data set and appropriate FAO 
soils (1974) and planting dates for each pixel(resolution 58 Km)  in the CLIP domain. 



 
 
 
 

 

 
CLIMATE DOWNSCALING 

1 acquired and supplied ERA40 reanalysis data to CLIP (1deg. Resolution 4xdaily 
total column water and 2m temperature) 

2 supplied CRU TS2.1 data to CLIP 
3 downloaded monthly GCM data from the PCMDI site including ECHAM5, 

HadGEM1, HadCM3, CCCma, CSIRO Mk3.0, GFDL CM2.1 – temperature, sea 
surface temperature, mslp and precipitation 

4 extraction of various regions to facilitate the construction of modelled SOI and 
Indian Ocean Dipole Index (Dipole Mode Index (DMI)) and comparison with 
precipitation variability 

5 constructed DMI for the 6 GCMs (~1850-2100) for the control and future A2 
scenario 

6 acquired new GPCC VASClimO 0.5deg. gridded monthly precipitation 
climatology 

7 evaluation of GPCC data ability to replicate trends in precipitation data over East 
Africa when compared to observed records (1951-2000)  

8 GPCC data also compared to CRU 0.5deg. gridded climatology which has been 
identified in the literature as not being suitable for use in trend analyses. The 
GPCC data has been compared to the CRU climatology in order to assess whether 
the new data set is superior in terms of its ability to describe observed trends. One 
drawback of the GPCC data is its relatively short time span compared to the 100 
years of the CRU gridded climatology 

9 PCA of East African rainfall has been carried out for various time periods over 
the 20th Century. 

 

This has resulted in: 

1. Century to decadal scales for East Africa: Comparison between two 
gridded rainfall products shows that despite efforts to ensure spatial and 
temporal homogeneity, the GPCC grid series do not differ noticeably from 
the CRU TS 2.1 grid series over East Africa. This is likely to be a 
consequence of low density of stations that meet both datasets’ quality 
control criteria in the East African region so that their grid series are based 
on similar station networks. The CRU gridded product indicates that over 
the 1901-2002 period the East African region has experienced different 



trends in annual rainfall. The spatial behaviour of annual linear trends for 
four timeslices show that at the beginning of the 20th Century the western 
part of the region experienced increasing rainfall, this shifted to the north 
during the 1931-60 period, was isolated to the regions of highest 
topography during the 1961-90 period and covered the eastern half of the 
region during the last 12 years of the record.  

2. Sub-regional: Local scale analyses of annual, seasonal and daily rainfall 
characteristics in three sub-regions of East Africa show that it is difficult 
to generalise about temporal variability in these areas of diverse terrain.  
Between the sub-regions there are some similarities, e.g., the seasonal 
regimes are similar in Kenya/Tanzania and Uganda along with some 
differences, e.g., interannual variability; SW Tanzania shows a stronger 
drying trend than the Kenya/Tanzania and Uganda sites.  There is also 
considerable temporal variation within the sub-regions despite the fact that 
most of the stations in each sub-region also lie within regions of temporal 
coherence identified by regionalisation methods.  

3. Station and grid-box scale interannual variability: SW Tanzania shows a 
slight drying trend in annual rainfall with the exception of Mbeya across 
the full station record. This trend is replicated by the GPCC data (1951-
2000) and is also found in both data sets for the overlap period.  The 
Ugandan stations show decreasing rainfall in the most northern locations 
and increases in the most southern stations whilst GPCC shows decreases 
across the Ugandan region. The overlap period for both data sets indicates 
a general decrease in rainfall with the exception of Lyantonde. 
Kenya/Tanzania shows a mixed pattern of increasing and decreasing 
annual rainfall, unrelated to location. A reduction in the length of overlap 
period between the station and GPCC data results in the majority of the 
stations showing a positive trend. Comparison between the GPCC and 
station data shows that in general the GPCC grid boxes replicate the trends 
identified by the station data for the overlap period but are not of equal 
magnitude. 

4. Daily time scales: Analyses based on wet and dry day frequencies in 
Uganda and SW Tanzania reveal decreases in the number of wet days and 
increases in the number of dry days over the record whilst for the 
Kenya/Tanzanian sub-region the number of wet and dry days per year 
tends to be relatively consistent through time. There is no consistent trend 
in the wet day amount or the frequency of heavy rainfall days across the 
three sub-regions, possibly a result of a lack of overlapping data and 
incomplete series. 

5. Cross-Scales analysis: In nearly all cases trends in rainfall are highly 
sensitive to the period over which they are calculated because there are 
few examples of long duration sustained trend in any rainfall statistics. 
Thus, no clear, systematic signal emerges across temporal scales. It is well 
known that for this reason, seasonal climate forecasts need to be tailored 
to particular location specific predictor relationships and that these may be 
subject to interdecadal variability. This spatial and temporal heterogeneity 



highlights the difficulty of generalising the interactions between climate 
and, biophysical and socio-economic systems in the region. 

EXAMINATION OF TEMPORAL AND SPATIAL TRENDS IN PRECIPITATION 
This activity is examining temporal and spatial trends in the standardized precipitation 
index (SPI) over the study region in East Africa.  Time series of a drought index were 
investigated for the period from 1963 up to 2002. Data from 19 stations were utilized. 
Missing data were substituted with gridded data (CRU) when appropriate. The 
Standardized Precipitation Index (SPI) is a versatile index calculated from precipitation 
data (McKee et al. 1993).  It is a standardized score over a specific time scale such as 3, 
6, or 12 months, relative for a particular site. Positive SPI values indicate greater than 
median precipitation, while negative values indicate less than median precipitation.  We 
used clustering procedures, loess smoothing and spectral analysis to study the trends of 
wet and dry spells in East Africa, including the study of changes in variability across time 
and space. 
 
STATISTICAL ANALYSES 
Statistical analyses have continued to explore issues of uncertainty, replicability and 
assessment of regional patterns in the time series of LAI and albedo. These are essential 
to the parametization of “generic” regional climate models for the East Africa region. 
 
REGIONAL CLIMATE MODELING: 
The CLIP version of RAMS is tuned, and has been configured for four different 
computer systems.  There are several simultaneous simulations currently running, 
including a comparison of climate under current conditions with those using 2050 land 
use conditions, but atmospheric boundary conditions corresponding to times near 2000.  
Extensive statistical analysis has been carried out using the current RAMS configuration.  
This includes histograms of variables by month, which is compared to observations of 
MODIS (for surface temperature) and TRMM (for precipitation).  Some simple 
comparisons of RAMS simulations with observations are in progress for publication.  In 
addition, some preliminary simulation differences driven with projected land cover 
datasets are illustrated in the accompanying figures. 
 
We are currently adapting the model to run faster by adjusting the size of the domain and 
by adding sea surface temperatures that are specified to agree with input datasets 
corresponding to observations or the results of global simulations, as appropriate.  We are 
also enhancing the capability of RAMS to output daily accumulated incident solar 
radiation, which is a relevant variable for input to the simulation of net primary 
productivity (NPP).  This will accompany the more basic variables of daily high and low 
temperature and precipitation that have already been passed to the NPP models.  
Additionally, output from the Land Transformation Model (LTM) has been successfully 
ingested into RAMS.  This combination of successful input and output from the relevant 
boxes in the feedback “loop” demonstrates the readiness of this component for execution 
as part of the loop.  This has been accomplished in dry runs of all four of the basic 
coupled systems in Activity 6. 
 



Submission of a set of papers is anticipated within a few months.  The first two of these 
compare the simulation from RAMS using the land use dataset prepared especially for 
this project (CLIPcover) against the simulation using the Olson Global Ecosystem 
(OGE), the default land cover dataset for RAMS.  The first will make the baseline 
comparison between these two options during a year with near average rainfall in the 
model domain.  The second will assess how the ambient precipitation modulates this 
effect by doing the same comparison in years that were anomalously wet and dry.  An 
additional third paper will assess the effect of empirical correction of annual cycle of land 
cover parameters, using cubic spline fits of leaf area index (LAI) and fractional 
vegetation cover (FC) to estimations from MODIS.  This correction is motivated by the 
fact that the RAMS default formulation specifies an annual cycle of LAI and FC that are 
designed and calibrated for use in temperate latitudes.  This means that the specified 
annual cycle of LAI and FC have both an incorrect trajectory of the annual cycle (the 
equatorial zone generally having two annual peaks in vegetation) and insufficient 
magnitude of intra-annual variation (Figures 23,24). 
 



 
 Figure 23. Accumulated precipitation difference (simulation using 2050 land cover 

minus that using 2000 land cover) for 1 January to 30 June, 2000.  This period is 
selected to illustrate the larger precipitation difference; rainfall differences during 
the second half of the year are much smaller. 



 
 
 
 

Figure 24. Near-surface air temperature difference (simulation using 2050 land 
cover minus that using 2000 land cover) for 1 January to 31 December, 2000. 

 
  
 


